p-group, metabelian, nilpotent (class 2), monomial
Aliases: C23.667C24, C22.4402+ 1+4, C22.3332- 1+4, C42⋊8C4.46C2, (C2×C42).699C22, (C22×C4).586C23, C23.63C23.48C2, C23.81C23.38C2, C23.65C23.78C2, C23.83C23.35C2, C2.C42.371C22, C2.4(C22.58C24), C2.64(C22.50C24), C2.93(C22.33C24), C2.105(C22.46C24), C2.108(C22.36C24), (C2×C4).461(C4○D4), (C2×C4⋊C4).477C22, C22.528(C2×C4○D4), SmallGroup(128,1499)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.667C24
G = < a,b,c,d,e,f,g | a2=b2=c2=1, d2=c, e2=ba=ab, f2=b, g2=a, ac=ca, ede-1=ad=da, geg-1=ae=ea, af=fa, ag=ga, bc=cb, fdf-1=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef-1=ce=ec, cf=fc, cg=gc, gdg-1=abd, fg=gf >
Subgroups: 292 in 172 conjugacy classes, 88 normal (82 characteristic)
C1, C2, C4, C22, C2×C4, C2×C4, C23, C42, C4⋊C4, C22×C4, C2.C42, C2×C42, C2×C4⋊C4, C42⋊8C4, C23.63C23, C23.65C23, C23.81C23, C23.83C23, C23.667C24
Quotients: C1, C2, C22, C23, C4○D4, C24, C2×C4○D4, 2+ 1+4, 2- 1+4, C22.33C24, C22.36C24, C22.46C24, C22.50C24, C22.58C24, C23.667C24
(1 9)(2 10)(3 11)(4 12)(5 70)(6 71)(7 72)(8 69)(13 73)(14 74)(15 75)(16 76)(17 77)(18 78)(19 79)(20 80)(21 81)(22 82)(23 83)(24 84)(25 85)(26 86)(27 87)(28 88)(29 89)(30 90)(31 91)(32 92)(33 93)(34 94)(35 95)(36 96)(37 97)(38 98)(39 99)(40 100)(41 101)(42 102)(43 103)(44 104)(45 105)(46 106)(47 107)(48 108)(49 109)(50 110)(51 111)(52 112)(53 113)(54 114)(55 115)(56 116)(57 117)(58 118)(59 119)(60 120)(61 121)(62 122)(63 123)(64 124)(65 127)(66 128)(67 125)(68 126)
(1 99)(2 100)(3 97)(4 98)(5 126)(6 127)(7 128)(8 125)(9 39)(10 40)(11 37)(12 38)(13 43)(14 44)(15 41)(16 42)(17 47)(18 48)(19 45)(20 46)(21 51)(22 52)(23 49)(24 50)(25 55)(26 56)(27 53)(28 54)(29 59)(30 60)(31 57)(32 58)(33 63)(34 64)(35 61)(36 62)(65 71)(66 72)(67 69)(68 70)(73 103)(74 104)(75 101)(76 102)(77 107)(78 108)(79 105)(80 106)(81 111)(82 112)(83 109)(84 110)(85 115)(86 116)(87 113)(88 114)(89 119)(90 120)(91 117)(92 118)(93 123)(94 124)(95 121)(96 122)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)(65 67)(66 68)(69 71)(70 72)(73 75)(74 76)(77 79)(78 80)(81 83)(82 84)(85 87)(86 88)(89 91)(90 92)(93 95)(94 96)(97 99)(98 100)(101 103)(102 104)(105 107)(106 108)(109 111)(110 112)(113 115)(114 116)(117 119)(118 120)(121 123)(122 124)(125 127)(126 128)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)
(1 55 39 85)(2 116 40 26)(3 53 37 87)(4 114 38 28)(5 24 68 110)(6 81 65 51)(7 22 66 112)(8 83 67 49)(9 115 99 25)(10 56 100 86)(11 113 97 27)(12 54 98 88)(13 119 103 29)(14 60 104 90)(15 117 101 31)(16 58 102 92)(17 123 107 33)(18 64 108 94)(19 121 105 35)(20 62 106 96)(21 127 111 71)(23 125 109 69)(30 74 120 44)(32 76 118 42)(34 78 124 48)(36 80 122 46)(41 91 75 57)(43 89 73 59)(45 95 79 61)(47 93 77 63)(50 70 84 126)(52 72 82 128)
(1 107 99 77)(2 78 100 108)(3 105 97 79)(4 80 98 106)(5 120 126 90)(6 91 127 117)(7 118 128 92)(8 89 125 119)(9 47 39 17)(10 18 40 48)(11 45 37 19)(12 20 38 46)(13 51 43 21)(14 22 44 52)(15 49 41 23)(16 24 42 50)(25 61 55 35)(26 36 56 62)(27 63 53 33)(28 34 54 64)(29 67 59 69)(30 70 60 68)(31 65 57 71)(32 72 58 66)(73 111 103 81)(74 82 104 112)(75 109 101 83)(76 84 102 110)(85 121 115 95)(86 96 116 122)(87 123 113 93)(88 94 114 124)
(1 13 9 73)(2 104 10 44)(3 15 11 75)(4 102 12 42)(5 122 70 62)(6 33 71 93)(7 124 72 64)(8 35 69 95)(14 100 74 40)(16 98 76 38)(17 81 77 21)(18 52 78 112)(19 83 79 23)(20 50 80 110)(22 108 82 48)(24 106 84 46)(25 29 85 89)(26 120 86 60)(27 31 87 91)(28 118 88 58)(30 56 90 116)(32 54 92 114)(34 128 94 66)(36 126 96 68)(37 101 97 41)(39 103 99 43)(45 109 105 49)(47 111 107 51)(53 57 113 117)(55 59 115 119)(61 67 121 125)(63 65 123 127)
G:=sub<Sym(128)| (1,9)(2,10)(3,11)(4,12)(5,70)(6,71)(7,72)(8,69)(13,73)(14,74)(15,75)(16,76)(17,77)(18,78)(19,79)(20,80)(21,81)(22,82)(23,83)(24,84)(25,85)(26,86)(27,87)(28,88)(29,89)(30,90)(31,91)(32,92)(33,93)(34,94)(35,95)(36,96)(37,97)(38,98)(39,99)(40,100)(41,101)(42,102)(43,103)(44,104)(45,105)(46,106)(47,107)(48,108)(49,109)(50,110)(51,111)(52,112)(53,113)(54,114)(55,115)(56,116)(57,117)(58,118)(59,119)(60,120)(61,121)(62,122)(63,123)(64,124)(65,127)(66,128)(67,125)(68,126), (1,99)(2,100)(3,97)(4,98)(5,126)(6,127)(7,128)(8,125)(9,39)(10,40)(11,37)(12,38)(13,43)(14,44)(15,41)(16,42)(17,47)(18,48)(19,45)(20,46)(21,51)(22,52)(23,49)(24,50)(25,55)(26,56)(27,53)(28,54)(29,59)(30,60)(31,57)(32,58)(33,63)(34,64)(35,61)(36,62)(65,71)(66,72)(67,69)(68,70)(73,103)(74,104)(75,101)(76,102)(77,107)(78,108)(79,105)(80,106)(81,111)(82,112)(83,109)(84,110)(85,115)(86,116)(87,113)(88,114)(89,119)(90,120)(91,117)(92,118)(93,123)(94,124)(95,121)(96,122), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64)(65,67)(66,68)(69,71)(70,72)(73,75)(74,76)(77,79)(78,80)(81,83)(82,84)(85,87)(86,88)(89,91)(90,92)(93,95)(94,96)(97,99)(98,100)(101,103)(102,104)(105,107)(106,108)(109,111)(110,112)(113,115)(114,116)(117,119)(118,120)(121,123)(122,124)(125,127)(126,128), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,55,39,85)(2,116,40,26)(3,53,37,87)(4,114,38,28)(5,24,68,110)(6,81,65,51)(7,22,66,112)(8,83,67,49)(9,115,99,25)(10,56,100,86)(11,113,97,27)(12,54,98,88)(13,119,103,29)(14,60,104,90)(15,117,101,31)(16,58,102,92)(17,123,107,33)(18,64,108,94)(19,121,105,35)(20,62,106,96)(21,127,111,71)(23,125,109,69)(30,74,120,44)(32,76,118,42)(34,78,124,48)(36,80,122,46)(41,91,75,57)(43,89,73,59)(45,95,79,61)(47,93,77,63)(50,70,84,126)(52,72,82,128), (1,107,99,77)(2,78,100,108)(3,105,97,79)(4,80,98,106)(5,120,126,90)(6,91,127,117)(7,118,128,92)(8,89,125,119)(9,47,39,17)(10,18,40,48)(11,45,37,19)(12,20,38,46)(13,51,43,21)(14,22,44,52)(15,49,41,23)(16,24,42,50)(25,61,55,35)(26,36,56,62)(27,63,53,33)(28,34,54,64)(29,67,59,69)(30,70,60,68)(31,65,57,71)(32,72,58,66)(73,111,103,81)(74,82,104,112)(75,109,101,83)(76,84,102,110)(85,121,115,95)(86,96,116,122)(87,123,113,93)(88,94,114,124), (1,13,9,73)(2,104,10,44)(3,15,11,75)(4,102,12,42)(5,122,70,62)(6,33,71,93)(7,124,72,64)(8,35,69,95)(14,100,74,40)(16,98,76,38)(17,81,77,21)(18,52,78,112)(19,83,79,23)(20,50,80,110)(22,108,82,48)(24,106,84,46)(25,29,85,89)(26,120,86,60)(27,31,87,91)(28,118,88,58)(30,56,90,116)(32,54,92,114)(34,128,94,66)(36,126,96,68)(37,101,97,41)(39,103,99,43)(45,109,105,49)(47,111,107,51)(53,57,113,117)(55,59,115,119)(61,67,121,125)(63,65,123,127)>;
G:=Group( (1,9)(2,10)(3,11)(4,12)(5,70)(6,71)(7,72)(8,69)(13,73)(14,74)(15,75)(16,76)(17,77)(18,78)(19,79)(20,80)(21,81)(22,82)(23,83)(24,84)(25,85)(26,86)(27,87)(28,88)(29,89)(30,90)(31,91)(32,92)(33,93)(34,94)(35,95)(36,96)(37,97)(38,98)(39,99)(40,100)(41,101)(42,102)(43,103)(44,104)(45,105)(46,106)(47,107)(48,108)(49,109)(50,110)(51,111)(52,112)(53,113)(54,114)(55,115)(56,116)(57,117)(58,118)(59,119)(60,120)(61,121)(62,122)(63,123)(64,124)(65,127)(66,128)(67,125)(68,126), (1,99)(2,100)(3,97)(4,98)(5,126)(6,127)(7,128)(8,125)(9,39)(10,40)(11,37)(12,38)(13,43)(14,44)(15,41)(16,42)(17,47)(18,48)(19,45)(20,46)(21,51)(22,52)(23,49)(24,50)(25,55)(26,56)(27,53)(28,54)(29,59)(30,60)(31,57)(32,58)(33,63)(34,64)(35,61)(36,62)(65,71)(66,72)(67,69)(68,70)(73,103)(74,104)(75,101)(76,102)(77,107)(78,108)(79,105)(80,106)(81,111)(82,112)(83,109)(84,110)(85,115)(86,116)(87,113)(88,114)(89,119)(90,120)(91,117)(92,118)(93,123)(94,124)(95,121)(96,122), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64)(65,67)(66,68)(69,71)(70,72)(73,75)(74,76)(77,79)(78,80)(81,83)(82,84)(85,87)(86,88)(89,91)(90,92)(93,95)(94,96)(97,99)(98,100)(101,103)(102,104)(105,107)(106,108)(109,111)(110,112)(113,115)(114,116)(117,119)(118,120)(121,123)(122,124)(125,127)(126,128), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,55,39,85)(2,116,40,26)(3,53,37,87)(4,114,38,28)(5,24,68,110)(6,81,65,51)(7,22,66,112)(8,83,67,49)(9,115,99,25)(10,56,100,86)(11,113,97,27)(12,54,98,88)(13,119,103,29)(14,60,104,90)(15,117,101,31)(16,58,102,92)(17,123,107,33)(18,64,108,94)(19,121,105,35)(20,62,106,96)(21,127,111,71)(23,125,109,69)(30,74,120,44)(32,76,118,42)(34,78,124,48)(36,80,122,46)(41,91,75,57)(43,89,73,59)(45,95,79,61)(47,93,77,63)(50,70,84,126)(52,72,82,128), (1,107,99,77)(2,78,100,108)(3,105,97,79)(4,80,98,106)(5,120,126,90)(6,91,127,117)(7,118,128,92)(8,89,125,119)(9,47,39,17)(10,18,40,48)(11,45,37,19)(12,20,38,46)(13,51,43,21)(14,22,44,52)(15,49,41,23)(16,24,42,50)(25,61,55,35)(26,36,56,62)(27,63,53,33)(28,34,54,64)(29,67,59,69)(30,70,60,68)(31,65,57,71)(32,72,58,66)(73,111,103,81)(74,82,104,112)(75,109,101,83)(76,84,102,110)(85,121,115,95)(86,96,116,122)(87,123,113,93)(88,94,114,124), (1,13,9,73)(2,104,10,44)(3,15,11,75)(4,102,12,42)(5,122,70,62)(6,33,71,93)(7,124,72,64)(8,35,69,95)(14,100,74,40)(16,98,76,38)(17,81,77,21)(18,52,78,112)(19,83,79,23)(20,50,80,110)(22,108,82,48)(24,106,84,46)(25,29,85,89)(26,120,86,60)(27,31,87,91)(28,118,88,58)(30,56,90,116)(32,54,92,114)(34,128,94,66)(36,126,96,68)(37,101,97,41)(39,103,99,43)(45,109,105,49)(47,111,107,51)(53,57,113,117)(55,59,115,119)(61,67,121,125)(63,65,123,127) );
G=PermutationGroup([[(1,9),(2,10),(3,11),(4,12),(5,70),(6,71),(7,72),(8,69),(13,73),(14,74),(15,75),(16,76),(17,77),(18,78),(19,79),(20,80),(21,81),(22,82),(23,83),(24,84),(25,85),(26,86),(27,87),(28,88),(29,89),(30,90),(31,91),(32,92),(33,93),(34,94),(35,95),(36,96),(37,97),(38,98),(39,99),(40,100),(41,101),(42,102),(43,103),(44,104),(45,105),(46,106),(47,107),(48,108),(49,109),(50,110),(51,111),(52,112),(53,113),(54,114),(55,115),(56,116),(57,117),(58,118),(59,119),(60,120),(61,121),(62,122),(63,123),(64,124),(65,127),(66,128),(67,125),(68,126)], [(1,99),(2,100),(3,97),(4,98),(5,126),(6,127),(7,128),(8,125),(9,39),(10,40),(11,37),(12,38),(13,43),(14,44),(15,41),(16,42),(17,47),(18,48),(19,45),(20,46),(21,51),(22,52),(23,49),(24,50),(25,55),(26,56),(27,53),(28,54),(29,59),(30,60),(31,57),(32,58),(33,63),(34,64),(35,61),(36,62),(65,71),(66,72),(67,69),(68,70),(73,103),(74,104),(75,101),(76,102),(77,107),(78,108),(79,105),(80,106),(81,111),(82,112),(83,109),(84,110),(85,115),(86,116),(87,113),(88,114),(89,119),(90,120),(91,117),(92,118),(93,123),(94,124),(95,121),(96,122)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64),(65,67),(66,68),(69,71),(70,72),(73,75),(74,76),(77,79),(78,80),(81,83),(82,84),(85,87),(86,88),(89,91),(90,92),(93,95),(94,96),(97,99),(98,100),(101,103),(102,104),(105,107),(106,108),(109,111),(110,112),(113,115),(114,116),(117,119),(118,120),(121,123),(122,124),(125,127),(126,128)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128)], [(1,55,39,85),(2,116,40,26),(3,53,37,87),(4,114,38,28),(5,24,68,110),(6,81,65,51),(7,22,66,112),(8,83,67,49),(9,115,99,25),(10,56,100,86),(11,113,97,27),(12,54,98,88),(13,119,103,29),(14,60,104,90),(15,117,101,31),(16,58,102,92),(17,123,107,33),(18,64,108,94),(19,121,105,35),(20,62,106,96),(21,127,111,71),(23,125,109,69),(30,74,120,44),(32,76,118,42),(34,78,124,48),(36,80,122,46),(41,91,75,57),(43,89,73,59),(45,95,79,61),(47,93,77,63),(50,70,84,126),(52,72,82,128)], [(1,107,99,77),(2,78,100,108),(3,105,97,79),(4,80,98,106),(5,120,126,90),(6,91,127,117),(7,118,128,92),(8,89,125,119),(9,47,39,17),(10,18,40,48),(11,45,37,19),(12,20,38,46),(13,51,43,21),(14,22,44,52),(15,49,41,23),(16,24,42,50),(25,61,55,35),(26,36,56,62),(27,63,53,33),(28,34,54,64),(29,67,59,69),(30,70,60,68),(31,65,57,71),(32,72,58,66),(73,111,103,81),(74,82,104,112),(75,109,101,83),(76,84,102,110),(85,121,115,95),(86,96,116,122),(87,123,113,93),(88,94,114,124)], [(1,13,9,73),(2,104,10,44),(3,15,11,75),(4,102,12,42),(5,122,70,62),(6,33,71,93),(7,124,72,64),(8,35,69,95),(14,100,74,40),(16,98,76,38),(17,81,77,21),(18,52,78,112),(19,83,79,23),(20,50,80,110),(22,108,82,48),(24,106,84,46),(25,29,85,89),(26,120,86,60),(27,31,87,91),(28,118,88,58),(30,56,90,116),(32,54,92,114),(34,128,94,66),(36,126,96,68),(37,101,97,41),(39,103,99,43),(45,109,105,49),(47,111,107,51),(53,57,113,117),(55,59,115,119),(61,67,121,125),(63,65,123,127)]])
32 conjugacy classes
class | 1 | 2A | ··· | 2G | 4A | ··· | 4R | 4S | ··· | 4X |
order | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 4 | ··· | 4 | 8 | ··· | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | - | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C4○D4 | 2+ 1+4 | 2- 1+4 |
kernel | C23.667C24 | C42⋊8C4 | C23.63C23 | C23.65C23 | C23.81C23 | C23.83C23 | C2×C4 | C22 | C22 |
# reps | 1 | 2 | 6 | 1 | 2 | 4 | 12 | 1 | 3 |
Matrix representation of C23.667C24 ►in GL6(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
2 | 3 | 0 | 0 | 0 | 0 |
4 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 0 | 3 |
2 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 | 4 |
2 | 0 | 0 | 0 | 0 | 0 |
4 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 3 |
0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
2 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[2,4,0,0,0,0,3,3,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,3,0,0,0,0,0,0,3],[2,0,0,0,0,0,0,2,0,0,0,0,0,0,0,2,0,0,0,0,2,0,0,0,0,0,0,0,1,1,0,0,0,0,0,4],[2,4,0,0,0,0,0,3,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,3,4],[1,2,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;
C23.667C24 in GAP, Magma, Sage, TeX
C_2^3._{667}C_2^4
% in TeX
G:=Group("C2^3.667C2^4");
// GroupNames label
G:=SmallGroup(128,1499);
// by ID
G=gap.SmallGroup(128,1499);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,448,253,344,758,723,184,1571,346,80]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=1,d^2=c,e^2=b*a=a*b,f^2=b,g^2=a,a*c=c*a,e*d*e^-1=a*d=d*a,g*e*g^-1=a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,f*d*f^-1=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f^-1=c*e=e*c,c*f=f*c,c*g=g*c,g*d*g^-1=a*b*d,f*g=g*f>;
// generators/relations